Concept and prototype of protein-ligand docking simulator with force feedback technology
نویسندگان
چکیده
A novel concept for a protein-ligand docking simulator using Virtual Reality (VR) technologies, in particular the tactile sense technology, was designed and a prototype was developed. Most conventional docking simulators are based on numerical differential calculations of the total energy between a protein and a ligand. However, the basic concept of our method differs from that of conventional simulators. Our design utilizes the force between a ligand and a protein instead of the total energy. The most characteristic function of the system is its ability to enable the user to 'touch' and sense the electrostatic potential field of a protein molecule. The user can scan the surface of a protein using a globular probe, which is given an electrostatic charge, and is controlled by a force feedback device. The electrostatic force between the protein and the probe is calculated in real time and immediately fed back into the force feedback device. The user can easily search interactively for positions where the probe is strongly attracted to the force field. Such positions can be regarded as candidate sites where functional groups of ligands corresponding to the probe can bind to the target protein. Certain limitations remain; for example, only twenty protein atoms can be used to generate the electrostatic field. Furthermore, the system can only use globular probes, preventing drug molecules or small chemical groups from being simulated. These limitations are the result of our insufficient computer resources. However, our prototype system has the potential to become a novel application method as well as being applicable to conventional VR technologies, especially to force feedback technologies.
منابع مشابه
Lai-yuen, Susana Karina. Nano-scale Molecular Docking and Assembly Simulator (nanodas) with Haptic Force-torque Rendering and Energy Minimization for Computer- Biography
LAI-YUEN, SUSANA KARINA. Nano-scale Molecular Docking and Assembly Simulator (NanoDAS) with Haptic Force-Torque Rendering and Energy Minimization for ComputerAided Molecular Design (CAMD). (Under the direction of Dr. Yuan-Shin Lee). The objective of this research is to investigate and develop computational and haptic interface techniques to improve the search and design of molecular docking, an...
متن کاملInteraction of Human Serum Albumin with Ethyl 2-[2-(dimethylamino)-4-(4-nitrophenyl)-1,3-thiazole-5-yl]-2-oxoacetate as a Synthesized Ligand
The interaction of human serum albumin with Ethyl 2-[2-(dimethylamino)-4-(4-nitrophenyl)- 1,3-thiazole-5-yl]-2-oxoacetate was investigated by using isothermal titration UV-visible spectrophotometry in tris-buffer, pH 7.4. According to these results, it was found that there are a set of 4 binding sites for this ligand on HSA with positive cooperativity in the binding process. This thiazole deriv...
متن کاملHardware-In-the Loop Simulation System Construction for Spacecraft On-orbit Docking Dynamics, Ideas, Procedural and Validation
The Hardware-In-the-Loop (HIL) simulation system for on-orbit docking dynamics is a large-scale complex test equipment. It establishes working conditions for the docking mechanism similar with those on orbit. The kernel of above dynamics HIL simulation system is a mechanical force and movement actions simulator. Besides the mechanical force and movement actions simulator, it also includes an en...
متن کاملP-31: The Alteration of SpermatogenesisHas A Correlation with Sertoli Cell Mitochondrial Abnormal Morphology in Cytotoxicity of Testicular Tissue Mediatedwith Monosodium
Background: Male infertility has many causes, including genetic infertility. The NOP2/Sun domain family, member7 (Nsun7) gene, which encodes putative methyltransferase Nsun7, has a role in sperm motility. The aim of the present study was to investigate the effect of the T26248G polymorphism on Nsun7 protein function and its role in male infertility. Materials and Methods: Semen samples were col...
متن کاملP-30: The Effect of The T26248G Polymorphism on Putative MethyltransferaseNsun7 Protein Function and Its Role in Male Infertility
Background: Male infertility has many causes, including genetic infertility. The NOP2/Sun domain family, member7 (Nsun7) gene, which encodes putative methyltransferase Nsun7, has a role in sperm motility. The aim of the present study was to investigate the effect of the T26248G polymorphism on Nsun7 protein function and its role in male infertility. Materials and Methods: Semen samples were col...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioinformatics
دوره 18 1 شماره
صفحات -
تاریخ انتشار 2002